如图,在五面体中,四边形是边长为4的正方形,,平面平面,且,,点G是EF的中点.(Ⅰ)证明:平面;(Ⅱ)若直线BF与平面所成角的正弦值为,求的长;(Ⅲ)判断线段上是否存在一点,使//平面?若存在,求出的值;若不存在,说明理由.
(本小题满分10分)已知椭圆的两个焦点为,离心率为,直线l与椭圆相交于A、B两点,且满足为坐标原点. (1)求椭圆的方程; (2)证明:的面积为定值.
(本小题满分10分)在平面直角坐标系中,点,直线,设圆的半径为,圆心在上. (1)若圆心也在直线上,过点作圆的切线,求切线的方程; (2)若圆上存在点,使,求圆心的横坐标的取值范围.
(文)如图,已知四边形ABCD为矩形,平面ABE,AE=EB=BC=2,F为CE上的点,且平面ACE. (1)求证:AE//平面BDF; (2)求三棱锥D-ACE的体积.
(本小题满分10分)(理)如图,棱柱的所有棱长都等于,,平面平面. (1)证明:; (2)求二面角的余弦值;
(本小题满分8分)已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率;若“”为真,“”为假,求实数的取值范围.