已知双曲线的两条渐近线与抛物线的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为.(1)求抛物线的方程;(2)过点的直线与抛物线交于不同的两点,若在轴上存在一点使得是等边三角形,求的值.
、(本小题满分14分) 已知函数(1)画出函数在的简图;(2)写出函数的最小正周期和单调递增区间;并求:当x为何值时,函数有最大值?最大值是多少?(3)若x是△ABC的一个内角,且y2=1,试判断△ABC的形状。
、(本小题满分14分)在平面直角坐标系xoy中,点、、。(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足,求t的值。
(本小题满分14分)已知m>0,设命题函数在上单调递减;命题关于x的不等式的解集为R。若命题与有且仅有一个正确,求的取值范围。
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()·=0,求t的值
.(本小题满分14分)已知函数(Ⅰ)求函数的定义域,并证明在定义域上是奇函数;(Ⅱ)若恒成立,求实数的取值范围;(Ⅲ)当时,试比较与的大小关系