如图,四棱锥P—ABCD的底面为菱形且,PA⊥底面ABCD,AB=2,PA=,E为PC的中点.(1)求直线DE与平面PAC所成角的大小;(2)求二面角E—AD—C的余弦值.
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1时,且当x∈时,f(x)≤g(x),求a的取值范围.
已知a,b为正实数.(1)求证:≥a+b;(2)利用(1)的结论求函数y= (0<x<1)的最小值.
如图,AB是⊙O的直径,BC是⊙O的切线,B为切点,OC平行于弦AD,连结CD. (1)求证:CD是⊙O的切线;(2)过点D作DE⊥AB于点E,交AC于点P,求证:P点平分线段DE.
如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆. (1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.
如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆O于点A,B,C,D,弦AD和BC交于点Q,割线PEF经过点Q交圆O于点E,F,点M在EF上,且∠BAD=∠BMF.(1)求证:PA·PB=PM·PQ;(2)求证:∠BMD=∠BOD.