已知抛物线的通径长为4,椭圆的离心率为,且过抛物线的焦点.(1)求抛物线和椭圆的方程;(2)过定点引直线交抛物线于两点(点在点的左侧),分别过作抛物线的切线,且与椭圆相交于两点.记此时两切线的交点为点.①求点的轨迹方程;②设点,求的面积的最大值,并求出此时点的坐标.
为预防H1N1病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33. (Ⅰ)求的值; (Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个? (Ⅲ)已知,求不能通过测试的概率
在中,角A,B,C所对应的边分别为 (Ⅰ)求角C的大小; (Ⅱ)求的最大值
已知函数(Ⅰ)若的解析式;(Ⅱ)若函数在其定义域内为增函数,求实数的取值范围.
在棱长为1的正方体ABCD—A1B1C1D1中,E,F,G分别为棱BB1,DD1和CC1的中点.(Ⅰ)求证:C1F//平面DEG;(Ⅱ)求三棱锥D1—A1AE的体积;(Ⅲ)试在棱CD上求一点M,使平面DEG.
已知定义在R上的函数和数列,当时,,其中均为非零常数.(Ⅰ)若数列是等差数列,求的值;(Ⅱ)令,求数列的通项公式;(Ⅲ)若数列为等比数列,求函数的解析式