已知圆. (1)若直线过点,且与圆相切,求直线的方程; (2)若圆的半径为4,圆心在直线:上,且与圆内切,求圆 的方程.
已知幂函数y=f(x)的图象过点(2,),试求出此函数的解析式,并写出其定义域,判断奇偶性,单调性.
已知函数,若函数恰有4个零点,则实数a的取值范围为 .
在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和 xn与的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,(1)证明:; (2)用 xn表示xn+1;并证明草原上的野兔总数量恒小于m.
如图所示,n台机器人M1,M2,……,Mn位于一条直线上,检测台M在线段M1 Mn上,n台机器人需把各自生产的零件送交M处进行检测,送检程序设定:当Mi把零件送达M处时,Mi+1即刻自动出发送检(i=1,2,……,n-1)已知Mi的送检速度为V(V>0), 且记,n台机器人送检时间总和为f(x).
(1)求f(x)的表达式;(2)当n=3时,求x的值使得f(x)取得最小值;(3)求f(x)取得最小值时,x的取值范围.
在等比数列( n∈N*)中a1>1,公比q>0,设bn=log2an,且b1+b3+b5=6,b1·b3·b5=0.(1)求证:数列是等差数列;(2)求前n项和Sn及通项an.