如图所示,n台机器人M1,M2,……,Mn位于一条直线上,检测台M在线段M1 Mn上,n台机器人需把各自生产的零件送交M处进行检测,送检程序设定:当Mi把零件送达M处时,Mi+1即刻自动出发送检(i=1,2,……,n-1)已知Mi的送检速度为V(V>0), 且记,n台机器人送检时间总和为f(x).
(1)求f(x)的表达式;(2)当n=3时,求x的值使得f(x)取得最小值;(3)求f(x)取得最小值时,x的取值范围.
(本小题满分12分) 解关于的不等式,其中,且.
附加题以数列的任意相邻两项为坐标的点()都在一次函数的图象上,数列满足. (1)求证:数列是等比数列; (2)设数列,的前项和分别为,且,求的值.
(12分)如图,直角三角形ABC的顶点坐标A()、B(0,),顶点C在x轴上,点P为线段OA的中点,设圆M是△ABC的外接圆,若DE是圆M的任意一条直径,试探究是否是定值?若是,求出定值;若不是,请说明理由.
(12分) 已知平面区域恰好被面积最小的圆C:及其内部覆盖. (1)求圆C的方程; (2)斜率为1的直线与圆C交于不同两点A、B,满足,求直线的方程.
(12分) 已知关于的一元二次不等式对任意实数都成立,试比较实数的大小.