本题满分13分)某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(为常数,且,设该食品厂每公斤蘑菇的出厂价为元(),根据市场调查,销售量与成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(Ⅰ)求该工厂的每日利润元与每公斤蘑菇的出厂价元的函数关系式;(Ⅱ)若,当每公斤蘑菇的出厂价为多少元时,该工厂的利润最大,并求最大值.
已知函数是奇函数.(1)求的值; (2)判断函数的单调性,并用定义证明;(3)求函数的值域.
已知集合 .(1)若,求实数的取值范围;(2)若,求实数的取值范围.
(本题满分14分) 已知数列中,.(1)写出的值(只写结果)并求出数列的通项公式;(2)设,若对任意的正整数,当时,不等式恒成立,求实数的取值范围。
(本题满分14分) 已知点是⊙:上的任意一点,过作垂直轴于,动点满足。(1)求动点的轨迹方程; (2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。
(本题满分13分) 如图,在六面体中,平面∥平面,⊥平面,,,∥.且,.(1)求证: ∥平面;(2)求二面角的余弦值;(3) 求五面体的体积.