(本小题满分12分)在数列.(1)求证:数列是等差数列,并求数列的通项公式;(2)设,数列项和为,是否存在正整整m,使得 对于恒成立,若存在,求出m的最小值,若不存在,说明理由.
(本小题满分12分)在中,已知,.(1)求与的值;(2)若角,,的对边分别为,,,且,求,的值.
(本小题满分12分)将一枚骰子先后抛掷两次,观察向上的点数,(1)求点数之和是5的概率;(2)设a,b分别是将一枚骰子先后抛掷两次向上的点数,求等式成立的概率。
(本小题满分14分)已知椭圆:的上顶点为,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)证明:过椭圆:上一点的切线方程为;(Ⅲ)从圆上一点向椭圆引两条切线,切点分别为,当直线分别与轴、轴交于、两点时,求的最小值.
(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=,PD⊥平面ABCD,PD=AD=1,点分别为AB和PD中点.(Ⅰ)求证:直线AF平面PEC ;(Ⅱ)求PC与平面PAB所成角的正弦值.
(本小题满分12分)若定义在上的函数满足,,R.(Ⅰ)求函数解析式;(Ⅱ)求函数单调区间.