已知为数列的前项和,,.⑴设数列中,,求证:是等比数列;⑵设数列中,,求证:是等差数列;⑶求数列的通项公式及前项和.【解题思路】由于和中的项与中的项有关,且,可利用、的关系作为切入点.
(10分)某市为了发展农村贫困教育,市教育局决定从5位优秀骨干教师(2位女教师,3位男教师)中选派3位教师担任下乡支教教师. (1) 选派的三位教师中恰有2位女教师的概率;(2) 选派的三位教师中至少有1位女教师的概率;
(10分)已知圆:,和定点,求:(1) 过点作圆的切线,求直线方程;(2) 过点作直线与圆相交于、两点,且时,求直线的方程.
(10)分) 已知正方体,是底对角线的交点. 求证:(1)∥面;(2)面.
(10分)设,求的值.
已知函数,(1)若函数在点处的切线斜率为1,求的值;(2)在(1)的条件下,对任意,函数在区间总存在极值,求的取值范围;(3)若,对于函数在上至少存在一个使得成立,求实数的取值范围。