在直角坐标系中,点到点,的距离之和是,点的轨迹是,直线与轨迹交于不同的两点和.(1)求轨迹的方程;(2)是否存在常数,?若存在,求出的值;若不存在,请说明理由.
定义在上的函数,当时,,且对任意的 ,有, (Ⅰ)求证:; (Ⅱ)求证:对任意的,恒有; (Ⅲ)若,求的取值范围.
已知函数,. (Ⅰ)求函数的最小值和最小正周期; (Ⅱ)设的内角、、的对边分别为、、,满足,且,求、的值.
一个袋中装有大小相同的球10个,其中红球8个,黑球2个,现从袋中有放回地取球,每次随机取1个. 求: (Ⅰ)连续取两次都是红球的概率; (Ⅱ)如果取出黑球,则取球终止,否则继续取球,直到取出黑球,取球次数最多不超过4次,求取球次数的概率分布列及期望.
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点. (Ⅰ)证明 平面EDB; (Ⅱ)求EB与底面ABCD所成的角的正切值.
设是由个实数组成的行列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (1)数表如表1所示,若经过两“操”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1
(2)数表如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数的所有可能值;表2 (3)对由个实数组成的行列的任意一个数表,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负实数?请说明理由.