首项为正数的数列 { a n } 满足 a n + 1 = 1 4 ( a n 2 + 3 ) , n ∈ N * . (Ⅰ)证明:若 a 1 为奇数,则对一切 n ≥ 2 , a n 都是奇数; (Ⅱ)若对一切 n ∈ N * ,都有 a n + 1 > a n ,求 a 1 的取值范围。
在锐角△ABC中,a,b,c分别为角A,B,C所对的边,又c=,b=4,且BC边上的高h=2. (1)求角C; (2)求边a的长
袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求: (1)3个全是红球的概率; (2)3个颜色全相同的概率; (3)3个颜色不全相同的概率; (4)3个颜色全不相同的概率.
从两块玉米地里各抽取10株玉米苗,分别测得它们的株高如下(单位:cm ): 甲:25 41 40 37 22 14 19 39 21 42乙:27 16 44 27 44 16 40 40 16 40 根据以上数据回答下面的问题: (1)哪种玉米苗长得高? (2)哪种玉米苗长得齐?
已知抛物线与直线交于两点,,点在抛物线上,. (Ⅰ) 求的值; (Ⅱ) 求点的坐标.
已知函数. (Ⅰ)求函数的单调递增区间; (Ⅱ)函数在上的最大值与最小值的差为,求的表达式.