定义:若数列满足,则称数列为“平方递推数列”。已知数列 中,,点在函数的图像上,其中为正整数。 (Ⅰ)证明:数列是“平方递推数列”,且数列为等比数列。 (Ⅱ)设(Ⅰ)中“平方递推数列”的前项之积为,即,求数列的通项及关于的表达式。 (Ⅲ)记,求数列的前项之和,并求使的的最小值。
(10分)在一次国际大型体育运动会上,某运动员报名参加了其中5个项目的比赛.已知该运动员在这5个项目中,每个项目能打破世界纪录的概率都是0.8,那么在本次运动会上:(1)求该运动员至少能打破3项世界纪录的概率;(2)若该运动员能打破世界纪录的项目数为,求的数学期望(即均值).
(10分) 甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(1)分别求甲、乙两人考试合格的概率;(2)求甲、乙两人至少有一人考试合格的概率.
(8分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求;(1) 第1次和第2次抽都到理科题的概率;(2)在第1次抽到理科题的条件下, 第2次抽到理科题的概率;
(8分)有4个不同的球,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有两个盒不放球,有多少种放法?
(8分)一个口袋有5个同样大小的球,编号为1、2、3、4、5,从中同时取出3个,以ξ表示取出球编号的最小号码,求(1)ξ的分布列.(2)取出球编号最小的号码小于等于2的概率