(10分)在一次国际大型体育运动会上,某运动员报名参加了其中5个项目的比赛.已知该运动员在这5个项目中,每个项目能打破世界纪录的概率都是0.8,那么在本次运动会上:(1)求该运动员至少能打破3项世界纪录的概率;(2)若该运动员能打破世界纪录的项目数为,求的数学期望(即均值).
如图,已知椭圆(a>b>0)的离心率,过顶点A、B的直线与原点的距离为.(1)求椭圆的方程.(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
设命题:实数满足,其中,命题:实数满足.(1)若且为真,求实数的取值范围; (2)若是的充分不必要条件,求实数的取值范围
在△ABC中,已知,,B=45°, 求A、C及c .
等比数列中,公比,数列的前n项和为,若,求数列 的通项公式。
光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k,通过x块玻璃以后强度为y.(1)写出y关于x的函数关系式;(2)通过多少块玻璃以后,光线强度将减弱到原来的以下.(lg3≈0.477 1)