如图,已知椭圆(a>b>0)的离心率,过顶点A、B的直线与原点的距离为.(1)求椭圆的方程.(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
如图,在直角梯形中,°,,平面,,,设的中点为,. (1) 求证:平面; (2) 求四棱锥的体积.
在中,分别是角所对的边,且满足. (1) 求的大小; (2) 设向量,求的最小值.
已知复数. (1) 求z的共轭复数; (2) 若,求实数的值.
已知直线的方程为,圆的方程为. (1) 把直线和圆的方程化为普通方程; (2) 求圆上的点到直线距离的最大值.
已知函数,其中且m为常数. (1)试判断当时函数在区间上的单调性,并证明; (2)设函数在处取得极值,求的值,并讨论函数的单调性.