(8分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求;(1) 第1次和第2次抽都到理科题的概率;(2)在第1次抽到理科题的条件下, 第2次抽到理科题的概率;
已知函数是奇函数. (Ⅰ)求实数的值; (Ⅱ)试判断函数在(,)上的单调性,并证明你的结论; (Ⅲ)若对任意的,不等式恒成立,求实数 的取值范围.
已知、均为锐角,且的值.
数列 a n 足: a 1 + 2 a 2 + … + n a n = 4 - n + 2 2 n - 1 , n ∈ N + . (1)求 a 3 的值; (2)求数列 a n 的前 n 项和 T n ; (3)令 b 1 = a 1 , b n = T n - 1 n + 1 + 1 2 + 1 3 + … + 1 n a n n ≥ 2 ,证明:数列 b n 的前 n 项和 S n 满足 S n < 2 + 2 ln n .
已知过原点的动直线 l 与圆 C 1 : x 2 + y 2 - 6 x + 5 = 0 相交于不同的两点 A , B . (1)求圆 C 1 的圆心坐标; (2)求线段 A B 的中点 M 的轨迹 C 的方程; (3)是否存在实数 k ,使得直线 L : y = k x - 4 与曲线 C 只有一个交点?若存在,求出 k 的取值范围;若不存在,说明理由.
设 a > 1 ,函数 f ( x ) = ( 1 + x 2 ) e x - a . (1)求 f ( x ) 的单调区间; (2)证明 f ( x ) 在 ( - ∞ , + ∞ ) 上仅有一个零点; (3)若曲线 y = f ( x ) 在点 P 处的切线与 x 轴平行,且在点 M ( m , n ) 处的切线与直线 O P 平行,( O 是坐标原点),证明: m ≤ a - 2 e 3 ﹣ 1 .