在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和 xn与的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,(1)证明:; (2)用 xn表示xn+1;并证明草原上的野兔总数量恒小于m.
(1)证明不等式: (2)为不全相等的正数,求证
已知函数. (Ⅰ)解不等式; (Ⅱ)若,且,求证:
已知函数. (1)讨论的单调性; (2)设,当时,,求的最大值; (3)已知,估计的近似值(精确到).
已知椭圆的离心率为,且过点. (1)求椭圆方程; (2)设不过原点的直线,与该椭圆交于两点,直线的斜率依次为,满足,试问:当变化时,是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
已知等差数列的前项和为,. (1)求数列的通项公式; (2)求数列的前项和为