(本小题满分分)在四棱锥中,平面平面,△是等边三角形,底面是边长为的菱形,,是的中点,是的中点.(Ⅰ)求证:平面;(Ⅱ) 求证:∥平面;(Ⅲ) 求直线与平面所成角的余弦值.
如图:线段AB、CD所在的直线是异面直线,E、F、G、H分别是线段AC、CB、BD、DA的中点,P、Q两点分别是AB和CD上的任意点,求证:PQ被平面EFGH平分、
、异面直线,为空间任一点,过作直线与、均相交,这样的直线可以作多少条。
三个平面两两相交不共线,求证三条直线交于一点或两两平行。
如图,已知异面直线AB、CD都平行于平面,且AB、CD在两侧,若AC、BD与分别交于M、N两点、求证:。
如图,异面直线、,,,为中点,,,,,,,求:为中点。