已知中心在原点,焦点在x轴的椭圆的离心率为,椭圆上一点P到两个焦点的距离之和为8,(1)求椭圆的方程(2)求与上述椭圆共焦点,且一条渐近线为y=x的双曲线方程
已知曲线上有一点列,点在x轴上的射影是,且,. (1)求数列的通项公式; (2)设四边形的面积是,求证:
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值. (Ⅰ)求函数f(x)的解析式; (Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4; (Ⅲ)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(本小题满分14分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),交椭圆于A、B两个不同点。 (1)求椭圆的方程; (2)求m的取值范围; (3)求证直线MA、MB与x轴始终围成一个等腰三角形。
(本小题满分12分) 如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点. (Ⅰ)求证:AB1//面BDC1; (Ⅱ)求二面角C1—BD—C的余弦值; (Ⅲ)在侧棱AA1上是否存在点P,使得 CP⊥面BDC1?并证明你的结论.
已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)若函数在[-,]上的最大值与最小值之和为,求实数的值.