已知椭圆上的点到左右两焦点的距离之 和为,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)过右焦点的直线交椭圆于两点.(1)若轴上一点满足,求直线斜率的值;(2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
已知函数(Ⅰ)求的最小值;(Ⅱ)若在上为单调增函数,求实数的取值范围;(Ⅲ)证明:….
为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品. (Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损? (Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.
已知数列的前项和为,且(Ⅰ)求数列的通项公式;(Ⅱ)已知数列的通项公式,记,求数列的前项和.
如图,四棱锥中,底面为矩形,⊥底面,,点是棱的中点. (Ⅰ)求点到平面的距离;(Ⅱ) 若,求二面角的平面角的余弦值 .
已知函数(其中的最小正周期为.(Ⅰ)求的值,并求函数的单调递减区间;(Ⅱ)在锐角中,分别是角的对边,若的面积为,求的外接圆面积.