选修4-1:几何证明选讲如图,直线经过上的点,并且交直线于点、,其中在线段上. 连结(Ⅰ)证明:直线是的切线;(Ⅱ)若,的半径为3,求的长.
设椭圆E:+=1(a>b>0)的上焦点是F1,过点P(3,4)和F1作直线PF1交椭圆于A,B两点,已知A(,).(1)求椭圆E的方程;(2)设点C是椭圆E上到直线PF1距离最远的点,求C点的坐标.
设A,B分别为椭圆+=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距.(1)求椭圆的方程;(2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.
已知定义域为的函数同时满足以下三个条件:①对任意的,总有;②; ③当,且时,成立.称这样的函数为“友谊函数”.请解答下列各题:(1)已知为“友谊函数”,求的值;(2)函数在区间上是否为“友谊函数”?请给出理由;(3)已知为“友谊函数”,假定存在,使得,且,求证:.
已知线段,的中点为,动点满足(为正常数).(1)建立适当的直角坐标系,求动点所在的曲线方程;(2)若,动点满足,且,试求面积的最大值和最小值.
已知过抛物线的焦点的直线交抛物线于,两点.求证:(1)为定值;(2) 为定值.