选修4-1:几何证明选讲如图,直线经过上的点,并且交直线于点、,其中在线段上. 连结(Ⅰ)证明:直线是的切线;(Ⅱ)若,的半径为3,求的长.
已知椭圆的中心在原点,焦点在轴的非负半轴上,点到短 轴端点的距离是4,椭圆上的点到焦点距离的最大值是6. (1)求椭圆的标准方程和离心率; (2)若为焦点关于直线的对称点,动点满足,问是否存在一个定点,使到点的距离为定值?若存在,求出点的坐标及此定值;若不存在,请说明理由.
已知. (1)当时,解不等式; (2)当时,恒成立,求实数的取值范围.
已知ΔABC的三边方程是AB:,BC: CA:, (1)求∠A的大小. (2)求BC边上的高所在的直线的方程.
已知椭圆方程为,它的一个顶点为,离心率. (1)求椭圆的方程; (2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为,求△AOB面 积的最大值.
已知函数,其中R. (1)若曲线在点处的切线方程为,求函数的解析 式; (2)当时,讨论函数的单调性.