选修4-4:坐标系与参数方程在直角坐标系中,设倾斜角为的直线:,(为参数)与曲线,(为参数)相交于不同两点、.(Ⅰ)若,求线段中点的坐标;(Ⅱ)若,其中,求直线的斜率.
在三棱柱中,侧面是边长为2的正方形,点在平面上的射影恰好为的中点,且,设为中点, (1)求证:平面; (2)求与平面所成角的正弦值.
数列满足,(). (1)证明:数列是等差数列; (2)求数列的通项公式; (3)设,求数列的前项和.
在中,,,分别为内角,,的对边,且. (1)求; (2)若,,求.
已知椭圆:的离心率为,其长轴长与短轴长的和等于6. (1)求椭圆的方程; (2)如图,设椭圆的上、下顶点分别为,,是椭圆上异于,的任意一点,直线,分别交轴于点,,若直线与过点,的圆相切,切点为,证明:线段的长为定值.
数列满足,(). (1)设,求数列的通项公式; (2)设,数列的前项和为,求出并由此证明:<.