已知正的边长为4,CD是AB边上的高,E,F分别是AC和BC边上的中点,现将沿CD翻折成直二面角A-BC-B.(1)求二面角E-DF-C的余弦值;(2)在线段BC上是否存在一点P,使APDE?如果存在,求出的值;如果不存在,说明理由.
、如图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=。(1)求证:PA⊥平面ABCD;(2)求异面直线所成的角;(3)求四棱锥P-ABCD的体积。
某市为了保障民生,防止居民住房价格过快增长,计划出台合理的房价调控政策,为此有关部门抽样调查了100个楼盘的住房销售价格,右表是这100个楼盘住房销售均价(单位:千元/平米)的频率分布表,根据右表回答以下问题:(1)求下表中a,b的值; (2)求该市的楼盘的住房销售价格的众数;(3)请将下面的频率分布直方图补充完整,并根据直方图估计该市居民住房销售价格在4千元/平米到8千元/平米之间的概率。
已知函数,(1)求的最小正周期;(2)求 的最大值,并求使取得最大值时的的集合。
(本题10分)已知关于的不等式(Ⅰ)当时,解不等式;(Ⅱ)如果不等式的解集为空集,求实数的取值范围。
(本题10分)在直角坐标系中,直线的参数方程为为参数),若以O为极点,轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为,求直线曲线C所截得的弦长。