、如图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=。(1)求证:PA⊥平面ABCD;(2)求异面直线所成的角;(3)求四棱锥P-ABCD的体积。
(本小题满分12分) 某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。 (Ⅰ)求三位同学都没有中奖的概率; (Ⅱ)求三位同学中至少有两位没有中奖的概率.
(本小题满分10分) 如图,在平面直角坐标系中,点在第一象限内,交轴于点, . (1)求的长; (2)记,.(为锐角),求sina,sin的值
((本小题满分12分) 中心在原点,焦点在x轴上的椭圆,率心率,此椭圆与直线交于A、B两点,且OA⊥OB(其中O为坐标原点). (1)求椭圆方程; (2)若M是椭圆上任意一点,、为椭圆的两个焦点,求的取值范围;
( (本小题满分12分) 已知在区间[0,1]上是增函数,在区间上是减函数,又 (Ⅰ)求的解析式; (Ⅱ)若在区间(m>0)上恒有≤x成立,求m的取值范围.
( (本小题满分12分) 已知数列中,,且当时,函数取得极值。 (Ⅰ)求数列的通项公式; (Ⅱ)数列满足:,,证明:是等差数列,并求数列的通项公式通项及前项和.