(本题满分12分)若定义在上的函数同时满足下列三个条件:①对任意实数均有成立;②; ③当时,都有成立。(1)求,的值;(2)求证:为上的增函数(3)求解关于的不等式.
(本小题满分14分)如图,在正三棱柱中,分别为中点.(1)求证:平面;(2)求证:平面平面.
(本小题满分14分)如图,已知点,是单位圆上一动点,且点是线段的中点.(1)若点在轴的正半轴上,求;(2)若,求点到直线的距离.
在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,半圆的极坐标方程为.(1)求得参数方程;(2)设点在上,在处的切线与直线垂直,根据(1)中你得到的参数方程,确定的坐标.
在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为:,直线与曲线C分别交于;(Ⅰ)写出曲线C参数方程和直线的普通方程; (Ⅱ)若成等比数列,求的值.
在直角坐标中,圆,圆。(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点极坐标(用极坐标表示);(Ⅱ)求圆的公共弦的参数方程。