在平面直角坐标系中,过定点作直线与抛物线相交于A,B两点.(1)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;(2)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.
已知是关于的方程的根, 证明:(Ⅰ);(Ⅱ).
如图,山顶有一座石塔,已知石塔的高度为. (Ⅰ)若以为观测点,在塔顶处测得地面上一点的俯角为,在塔底处测得处的俯角为,用表示山的高度; (Ⅱ)若将观测点选在地面的直线上,其中是塔顶在地面上的射影.已知石塔高度,当观测点在上满足时看的视角(即)最大,求山的高度.
如图,在直三棱柱中,底面△为等腰直角三角形,,为棱上一点,且平面⊥平面. (Ⅰ)求证:为棱的中点;(Ⅱ)为何值时,二面角的平面角为.
设等差数列的前项和为,满足:.递增的等比数列前项和为,满足:. (Ⅰ)求数列,的通项公式; (Ⅱ)设数列对,均有成立,求.
已知向量,,函数的图象与直线的相邻两个交点之间的距离为. (Ⅰ)求的值; (Ⅱ)求函数在上的单调递增区间.