将圆上每一点的横坐标都伸长为原来的倍,纵坐标都伸长为原来的2倍,得到曲线C.(1)求曲线C的参数方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知点P的极坐标为,且点P关于直线的对称点为点Q,设直线PQ与曲线C相交于A、B两点,求线段AB的垂直平分线的极坐标方程.
(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12. (Ⅰ)求该校报考飞行员的总人数; (Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
(本小题满分12分)根据下列算法语句,将输出的A值依次记为 (Ⅰ)求数列的通项公式; (Ⅱ)已知函数的最小正周期是,且函数的图象关于直线对称,求函数在区间上的值域.
(本小题满分10分)设. (1)若数列的各项均为1,求证:; (2)若对任意大于等于2的正整数,都有恒成立,试证明数列是等差数列.
(本小题满分10分)如图,已知四棱锥的底面是菱形,对角线交于点,,,,底面,设点满足. (1)当时,求直线与平面所成角的正弦值; (2)若二面角的大小为,求的值.
(选修4-5:不等式选讲) 已知为正实数,求证:,并求等号成立的条件.