已知椭圆,,为椭圆的两个焦点,M为椭圆上任意一点,且构成等差数列,过椭圆焦点垂直于长轴的弦长为3,(1)求椭圆E的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点A,B,且,求出该 圆的方程.
(本小题满分12分) 在四棱锥中,侧面是边长为2的正三角形,且与底面垂直;底面是菱形,,为的中点. (1)求四棱锥的体积; (2)求证:平面.
(本小题满分12分) 若平面向量(R),函数. (1)求函数的值域; (2)记△的内角的对边长分别为,若,且,求角的值.
(本小题满分10分) 若数列满足N*). (1)求的通项公式; (2)等差数列的各项均为正数,其前n项和为,且,又成等比数列,求.
甲盒中有一个红色球,两个白色球,这3个球除颜色外完全相同,有放回地连续抽取2个,每次从中任意地取出1个球,用列表的方法列出所有可能结果,计算下列事件的概率。 (1)取出的2个球都是白球; (2)取出的2个球中至少有1个白球.
已知,设计算法流程图,输出。