已知定义域为的二次函数的最小值为0,且有,直线的图象与的图象交于两点,两点间的距离为,数列满足 . (1)求函数的解析式; (2)求证数列是等比数列; (3)设,求数列{}的最小值及相应的
(本小题满分10分)选修4-5:不等式选讲 设函数,. (Ⅰ)当时,求不等式的解集; (Ⅱ)若恒成立,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系中,直线的参数方程(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为:. (Ⅰ)求直线的极坐标方程; (Ⅱ)求直线与曲线交点的极坐标.
(本小题满分10分)选修4-1:几何证明选讲 如图,在中,,以为直径的圆交于点,点是边的中点,连接交圆于点. (Ⅰ)求证:是圆的切线; (Ⅱ)求证:.
(本小题满分12分)已知函数. (Ⅰ)求函数的最大值; (Ⅱ)若函数与有相同极值点. ①求实数的值; ②若对于(为自然对数的底数),不等式恒成立,求实数的取值范围.
(本小题满分12分)已知椭圆的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合. (Ⅰ)求椭圆的方程; (Ⅱ)过点的动直线交椭圆于两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由.