如图,已知四棱锥P—ABCD,底面ABCD为菱形,PA平面ABCD,ABC=60O,E,F分别是BC,PC的中点。H为PD上的动点,EH与平面PAD所成最大角的正切值为。(1) 证明:AEPD;(2) 求异面直线PB与AC所成的角的余弦值;(3) 若AB=2,求三棱锥P—AEF的体积。
已知等差数列中,,其前10项和为65 (1)求数列的通项公式; (2)求数列的前n项和.
已知函数,为常数,,且是方程的解 (1)求的值; (2)当时,求函数的值域.
(选修4—5:不等式选讲)设函数。 (1)当a=-5时,求函数的定义域。 (2)若函数的定义域为R,求实数a的取值范围。
(选修4—4:坐标系与参数方程)设直角坐标系的原点与极坐标系的极点重合,轴正半轴与极轴重合。已知圆C的极坐标方程: (I)将极坐标方程化为普通方程。 (II)若点在圆C上,求的取值范围。
如图,BA是⊙O的直径,AD是⊙O切线,C、E分别 为半圆上不同的两点,BC交AD于D,BE交AD于F。 (I) 求证:BE·BF=BC·BD。 (II) 若⊙O的半径,BC=1,求AD。