(本小题满分13分)设函数.(1)若时,函数取得极值,求函数在处的切线方程;(2)若函数在区间内不单调,求实数的取值范围.
已知数列是首项为,公比的等比数列. 设,数列满足. (Ⅰ)求证:数列成等差数列; (Ⅱ)求数列的前项和; (Ⅲ)若对一切正整数恒成立,求实数的取值范围.
设数列的前项和为,已知 (Ⅰ)求证:数列为等差数列,并写出关于的表达式; (Ⅱ)若数列前项和为,问满足的最小正整数是多少?
在等差数列中,,前项和满足条件. (Ⅰ)求数列的通项公式; (Ⅱ)记,求数列的前项和.
设数列的前n项和为,点均在函数y=-x+12的图像上. (Ⅰ)写出关于n的函数表达式; (Ⅱ)求数列的前n项的和.
某城市1995年底人口为500万,人均住房面积为6 m2,如果该城市每年人口平均增长率为1%,则从1996年起,政府为解决民生推动经济适用房建设,每年平均需新增住房面积为多少万m2,才能使2014年底该城市人均住房面积至少为24m2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120="1.22)."