“囧”(jiǒng)曾经是一个风靡网络的流行词,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示右图中“囧”(阴影部分)的面积; (2)当x=2y=8时,求此时“囧”的面积;
如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形: (1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由; (2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).
甲、乙二人骑自行车同时从张庄出发,沿同一路线去李庄.甲行驶20分钟因事耽误一会儿,事后继续按原速行驶.下图表示甲、乙二人骑自行车行驶的路程y(千米)随时间x变化的图象(全程),根据图象回答下列问题: (1)乙比甲晚多长时间到达李庄? (2)甲因事耽误了多长时间? (3)x为何值时,乙行驶的路程比甲行驶的路程多1千米?
操作:如图,在正方形ABCD中,P是CD上一动点(与C、D不重合),使三角板的直角顶点与点P重合,并且一条直角边始终经过点B,另一直角边与正方形的某一边所在直线交于点E. 探究:①观察操作结果,哪一个三角形与△BPC相似,写出你的结论,(找出两对即可);并选择其中一组说明理由; ②当点P位于CD的中点时,直接写出① 中找到的两对相似三角形的相似比和面积比.
如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置,设BC=1,AC=,则顶点A运动到点A″的位置时, 求:(1)点A经过的路线的长度; (2)点A经过的路线与直线l所围成的面积.(计算结果保留π)
为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图: (1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整; (2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.