阅读材料:矩形的四个内角都是直角,矩形的对边平行且相等.利用阅读材料解决下列问题:如图,在矩形ABCD中,AB=6,BC=8,将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的F处. (1)求EF的长; (2)求梯形ABCE的面积.
如图, ΔABD 中, ∠ ABD = ∠ ADB .
(1)作点 A 关于 BD 的对称点 C ;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接 BC , DC ,连接 AC ,交 BD 于点 O .
①求证:四边形 ABCD 是菱形;
②取 BC 的中点 E ,连接 OE ,若 OE = 13 2 , BD = 10 ,求点 E 到 AD 的距离.
粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降 50 % .
(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;
(2)求明年改装的无人驾驶出租车是多少辆.
如图,平面直角坐标系 xOy 中, ▱ OABC 的边 OC 在 x 轴上,对角线 AC , OB 交于点 M ,函数 y = k x ( x > 0 ) 的图象经过点 A ( 3 , 4 ) 和点 M .
(1)求 k 的值和点 M 的坐标;
(2)求 ▱ OABC 的周长.
为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:
甲社区
67
68
73
75
76
78
80
82
83
84
85
90
92
95
乙社区
66
69
72
74
81
88
89
91
96
98
根据以上信息解答下列问题:
(1)求甲社区老人年龄的中位数和众数;
(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.
已知反比例函数 y = k x 的图象分别位于第二、第四象限,化简: k 2 k - 4 - 16 k - 4 + ( k + 1 ) 2 - 4 k .