如图,抛物线y=ax2+bx+3经过A(-1,0),B(3,0)两点,且交y轴于点C,对称轴与抛物线相交于点P、与直线BC相交于点M.(1)求该抛物线的解析式.(2)在抛物线上是否存在一点N,使得|MN-ON|的值最大?若存在,请求出点N的坐标;若不存在,请说明理由.(3)连接PB,请探究:在抛物线上是否存在一点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
先阅读下列因式分解的过程,再回答所提出的问题:例1:1+ax+ax(1+ax)=(1+ax)(1+ax)=(1+ax)2;例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2=(1+ax)2+ax(1+ax)2=(1+ax)2(1+ax)=(1+ax)3(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n= (1+ax)n+1 ;(2)分解因式:x﹣1﹣x(x﹣1)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004(答题要求:请将第(1)问的答案填写在题中的横线上)
因式分解:(1)a2b﹣b3;(2)1﹣n+m﹣mn;(3)x2﹣2x+1﹣y2;(4)(x﹣y)2+(x+y)(x﹣y)
分解因式:(1)(2x2﹣3x+1)2﹣22x2+33x﹣1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1﹣x﹣y)﹣1;(4)(x+3)(x2﹣1)(x+5)﹣20.
分解因式:(1)x9+x6+x3﹣3;(2)(m2﹣1)(n2﹣1)+4mn;(3)(x+1)4+(x2﹣1)2+(x﹣1)4;(4)a3b﹣ab3+a2+b2+1.
分解因式:x2﹣120x+3456分析:由于常数项数值较大,则采用x2﹣120x变为差的平方的形式进行分解,这样简便易行:x2﹣120x+3456=x2﹣2×60x+3600﹣3600+3456=(x﹣60)2﹣144=(x﹣60+12)(x﹣60﹣12)=(x﹣48)(x﹣72)请按照上面的方法分解因式:x2+42x﹣3528.