海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里处,如图.现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为.(1)当时,写出失事船所在位置的纵坐标.若此时两船恰好会合,求救援船速度的大小;(2)问救援船的时速至少是多少海里才能追上失事船?
选修4—1:几何证明选讲如图,PA切⊙O于点,D为的中点,过点D引割线交⊙O于、两点.求证: .
(本小题满分12分)已知,其中是自然对数的底数,(1)讨论时,的单调性。(2)求证:在(1)条件下,(3)是否存在实数,使得最小值是3,如果存在,求出的值;如果不存在,说明理由。
(本小题满分12分)定义在上的奇函数,已知当时,(1)写出在上的解析式(2)求在上的最大值(3)若是上的增函数,求实数的范围。
(本小题满分12分)定义在上的函数,对于任意的实数,恒有,且当时,。(1)求及的值域。(2)判断在上的单调性,并证明。(3)设,,,求的范围。
(本小题满分12分)解关于的不等式(其中是常数,且)