(本小题满分12分)已知,其中是自然对数的底数,(1)讨论时,的单调性。(2)求证:在(1)条件下,(3)是否存在实数,使得最小值是3,如果存在,求出的值;如果不存在,说明理由。
已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,, 为数列的前n项和.(1)求数列的通项公式和数列的前n项和;(2)若对任意的,不等式恒成立,求实数的取值范围;(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
设椭圆的左、右顶点分别为、,点在椭圆上且异于、两点,为坐标原点.(1)若直线与的斜率之积为,求椭圆的离心率;(2)对于由(1)得到的椭圆,过点的直线交轴于点,交轴于点,若,求直线的斜率.
已知函数(1)若,求的值;(2)若的图像与直线相切于点,求的值;(3)在(2)的条件下,求函数的单调区间.
如图,在四棱锥中,平面,底面是菱形,点O是对角线与的交点,是的中点,.(1) 求证:平面;(2) 平面平面;(3) 当四棱锥的体积等于时,求的长.
某校为了解学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了名学生,相关的数据如下表所示:
(1) 用分层抽样的方法从喜欢语文的学生中随机抽取名,高中学生应该抽取几名?(2) 在(1)中抽取的名学生中任取名,求恰有名初中学生的概率.