如图,在三棱柱中,四边形是边长为4的正方形,平面平面,,.(Ⅰ)求证:平面;(Ⅱ)若点是线段的中点,请问在线段是否存在点,使得面?若存在,请说明点的位置,若不存在,请说明理由;(Ⅲ)求二面角的大小.
如图,在 △ A B C 中,B= B = 90 ° ,AC= A C = 15 2 , D 、 E 两点分别在 A B 、 A C 上.使 A D D B = A E E C = 2 , D E = 3 。现将 △ A B C 沿 D E 折成直二面角,求:
(Ⅰ)异面直线 A D 与 B C 的距离; (Ⅱ)二面角 A - E C - B 的大小(用反三角函数表示).
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为 1 2 ,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数 ξ 的分别列与期望 E ξ 。
设 △ A B C 的内角 A , B , C 的对边分别为 a , b , c 且 A = 60 o , c = 3 b .求: (Ⅰ) a c 的值;
(Ⅱ) c o t B + c o t C 的值.
备选题:已知函数是定义在上的减函数,并且满足,. ①求的值; ②解不等式:.
已知f(x)是定义在[-1,1]上的奇函数. 当a, b∈[-1,1],且a+b≠0时,有 (1)判断函数f(x)的的单调性,并给以证明; (2)若f(1)=1,且f(x)≤m2-2bm+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数m的取值范围.