设函数在及时取得极值.(1)求a、b的值;(2)若对于任意的,都有成立,求c的取值范围.
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售高订购,决定当一次订量超过100个时,每多订购一个,订购的全部零件的出厂单价降低0.02元,但实际出厂单价不能低于51元. (1)当一次订购量为多少个时,零件的实际出厂单价恰好降为51元? (2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式. (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元(工厂售出一个零件的利润=实际出厂单价-成本价)?
如图,在四棱锥中,底面是直角梯形,∥,,⊥平面SAD,点是的中点,且,. (1)求四棱锥的体积;(2)求证:∥平面;(3)求直线和平面所成的角的正弦值.
在中,角所对的边分别为,且满足,. (1)求的面积; (2)若,求的值。
已知等差数列的前项和为,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.
某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示.(1)下表是年龄的频数分布表,求正整数的值;
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.