已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)椭圆左,右焦点分别为,过的直线与椭圆交于不同的两点,则△的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
某大型企业人力资源部为研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了180名员工进行调查,所得数据如下表所示: 对于人力资源部的研究项目,根据上述数据盘算能否在犯错误的概率不超过0.5%的情况下认为工作积极和支持企业改革有关系. 附:公式及相关数据:(其中n=a+b+c+d).
(本小题满分12分)已知函数=lnx。 (1)求函数g(x)=f(x)+mx2−4x在定义域内单调递增,求实数m的取值范围; (2)若b>a>0,求证:f(b)−f(a)>
(本小题满分10分)在平面直角坐标系中,曲线C1 的参数方程为(ϕ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ。 (1)求曲线C2的直角坐标方程; (2)已知点M是曲线C1上任意一点,点N是曲线C2上任意一点,求|MN|的取值范围。
(本小题满分12分)已知函数=(sinωx+cosωx)2+(sin2ωx−cos2ωx),(ω>0)的最小正周期为π。 (1)求ω的值及的单调递增区间; (2)在锐角ΔABC中,角ABC所对的边分别为abc,f (A)= +1,a=2,且b+c=4,求ΔABC的面积.
(本小题满分12分) (1)已知0<α<β<,sinα=,cos(α−β)=,求cosβ的值; (2)在ΔABC中,sinA−cosA=,求cos2A的值。