“创卫工作人人参与,环境卫生人人受益”,我区创卫工作已进入攻坚阶段.某校拟整修学校食堂,现需购买A、B两种型号的防滑地砖共60块,已知A型号地砖每块80元,B型号地砖每块40元.(1)若采购地砖的费用不超过3200元,那么,最多能购买A型号地砖多少块?(2)某地砖供应商为了支持创卫工作,现将A、B两种型号的地砖单价都降低a%,这样,该校花费了2560元就购得所需地砖,其中A型号地砖a块,求a的值.
如图,抛物线与轴交于、两点(点在点左边),与轴交于点.直线经过、两点.
(1)求抛物线的解析式;
(2)点是抛物线上的一动点,过点且垂直于轴的直线与直线及轴分别交于点、.,垂足为.设.
①点在抛物线上运动,若、、三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的的值;
②当点在直线下方的抛物线上运动时,是否存在一点,使与相似.若存在,求出点的坐标;若不存在,请说明理由.
一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量(件与售价(元件)为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:
(元件)
4
5
6
(件
10000
9500
9000
(1)求与的函数关系式(不求自变量的取值范围);
(2)在销售过程中要求销售单价不低于成本价,且不高于15元件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?
(3)抗疫期间,该商场这种商品售价不大于15元件时,每销售一件商品便向某慈善机构捐赠元,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出的取值范围.
如图所示:与的边相切于点,与、分别交于点、,.是的直径.连接,过作交于,连接、,与交于点.
(1)求证:直线与相切;
(2)求证:;
(3)若,时,过作交于、两点在线段上),求的长.
鄂州市某校数学兴趣小组借助无人机测量一条河流的宽度.如图所示,一架水平飞行的无人机在处测得正前方河流的左岸处的俯角为,无人机沿水平线方向继续飞行50米至处,测得正前方河流右岸处的俯角为.线段的长为无人机距地面的铅直高度,点、、在同一条直线上.其中,米.
(1)求无人机的飞行高度;(结果保留根号)
(2)求河流的宽度.(结果精确到1米,参考数据:,
已知关于的方程有两实数根.
(1)求的取值范围;
(2)设方程两实数根分别为、,且,求实数的值.