如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:=AB·AD;(2)若AD=4,AB=6,求的值.
如图,在△中,, 底边BC上的高AD=12,tan C = 2,如果将△沿直线l翻折后,点刚好落在边的中点E处,直线l与边AB交于点F,与边交于点H,求BH的长.
已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小.
如图,某学校综合楼入口处有一斜坡AB,坡角为12°,AB长为3 m.施工队准备将斜坡建成三级台阶,台阶高度均为h cm,深度均为30 cm,设台阶的起点为C.(1)求AC的长度;(2)每级台阶的高度h.(参考数据:sin12°≈0.20,cos12°≈0.97,tan12°≈0.21,结果保留整数)
如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.(1)用树状图或列表法求小华、小丽获胜的概率;(2)这个游戏规则对双方公平吗?请判断并说明理由.
某市从2010年开始加快保障房建设进程,现统计了该市2010年到2014年3月新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图.(1)小明看了统计图后说:“该市2013年新建保障房的套数比2012年少了.”你认为小明说法正确吗?请说明理由;(2)求补全条形统计图;(3)求这5年每年新建保障房的套数的中位数.