在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道: 摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱. (1)摸出的3个球为白球的概率是多少? (2)摸出的3个球为2个黄球1个白球的概率是多少? (3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
(本小题满分10分) 已知数列通项公式为,其中为常数,且,.等式,其中为实常数. (1)若,求的值; (2)若,且,求实数的值.
(本小题满分10分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AP=1,AD=,E为线段PD上一点,记.当时,二面角的平面角的余弦值为. (1)求AB的长; (2)当时,求直线BP与直线CE所成角的余弦值.
(本小题满分10分,不等式选讲) 已知实数满足,求的最小值.
(本小题满分10分,坐标系与参数方程选讲) 在平面直角坐标系xOy中,已知直线的参数方程为:(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.直线与圆相交于A,B两点,求线段AB的长.
(本小题满分10分,矩阵与变换) 设矩阵,,若,求矩阵M的特征值.