在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道: 摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱. (1)摸出的3个球为白球的概率是多少? (2)摸出的3个球为2个黄球1个白球的概率是多少? (3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
若函数f(x)=ax2+2x-ln x在x=1处取得极值. (1)求a的值; (2)求函数f(x)的单调区间及极值.
从4名男生和5名女生中任选5人参加数学课外小组,求在下列条件下各有多少种不同的选法? (1)选2名男生和3名女生,且女生甲必须入选; (2)至多选4名女生,且男生甲和女生乙不同时入选.
已知a,b,c,d∈(0,+∞),求证ac+bd≤.
已知F1、F2分别是椭圆的左、右焦点. (Ⅰ)若P是第一象限内该图形上的一点,,求点P的坐标; (Ⅱ)设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线的斜率的取值范围.
在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1、F2分别为椭圆+=1的左、右焦点.已知△F1PF2为等腰三角形. (1)求椭圆的离心率e; (2)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足=-2,求点M的轨迹方程.