如图,已知底角为的等腰梯形,底边长为7,腰长为,当一条垂直于底边垂足为的直线由从左至右向移动(与梯形有公共点)时,直线把梯形分成两部分,令,记左边部分的面积为.(1)试求1,3时的值;(2)写出关于的函数关系式.
(本小题满分12分)设的内角的对边分别为,,, ,且. (1)求角的大小; (2)若是和的等比中项,求的面积.
(本小题满分14分)已知. (1)求函数的单调区间; (2)求函数在 上的最小值; (3)对一切的,恒成立,求实数的取值范围.
(本小题满分12分)已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率,椭圆上的点到焦点的最短距离为, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且. (1)求椭圆方程; (2)求的取值范围.
(本小题满分12分)已知直三棱柱中,,,点在上. (1)若是中点,求证:∥平面; (2)当时,求二面角的余弦值.
(本小题满分12分)将编号为1,2,3,4的四张同样材质的卡片,随机放入编码分别为1,2,3,4的四个小盒中,每盒仅放一张卡片,若第号卡片恰好落入第号小盒中,则称其为一个匹对,用表示匹对的个数. (1)求第2号卡片恰好落入第2号小盒内的概率; (2)求匹对数的分布列和数学期望.