已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒。(1)甲、乙多少秒后相遇?(2)甲出发多少秒后,甲到A、B、C三点的距离和为40个单位?(3)当甲到A、B、C三点的距离和为40个单位时,甲调头返回,当甲、乙在数轴上再次相遇时,相遇点表示的数是____________.
如图,以点O为圆心的两个同心圆中,矩形ABCD的边BC为大圆的弦,边AD与小圆相切于点M,OM的延长线与BC相交于点N。 (1)点N是线段BC的中点吗?为什么? (2)若圆环的宽度(两圆半径之差)为6cm,AB=5cm,BC=10cm,求小圆的半径。
小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象。(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F。(1)△ABC与△FOA相似吗?为什么?(2)试判定四边形AFCE的形状,并说明理由。
一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°。(1)求证:GF⊥OC;(2)求EF的长(结果精确到0.1m)。(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
某文具商店共有单价分别为10元、15元和20元的3种文具盒出售,该商店统计了2011年3月份这3种文具盒的销售情况,并绘制统计图如下:(1)请在图②中把条形统计图补充完整.(2)小亮认为:该商店3月份这3种文具盒总的平均销售价格为(元),你认为小亮的计算方法正确吗?如不正确,请计算出总的平均销售价格.