某车间生产一种仪器的固定成本是元,每生产一台该仪器需要增加投入元,已知总收入满足函数:,其中是仪器的月产量.(利润=总收入-总成本).(Ⅰ)将利润表示为月产量的函数;(Ⅱ)当月产量为何值时,车间所获利润最大?最大利润是多少元?
在中,内角所对的边分别为,.(Ⅰ)确定角的大小;(Ⅱ)若的角平分线交线段于,且,设.(ⅰ)试确定与的关系式;(ⅱ)记和的面积分别为、,问当取何值时,+的值最小,最小值是多少?
如图,四棱锥中,为矩形,平面平面.(Ⅰ)求证:(Ⅱ)若,问当为何值时,四棱锥的体积最大?并求其最大体积.
已知数列中,,且点在函数的图象上,数列是各项都为正数的等比数列,且.(Ⅰ)求数列,的通项公式;(Ⅱ)若数列满足,记数列的前n项和为,求的值.
参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:(1)求参加数学抽测的人数、抽测成绩的中位数及分数分别在,内的人数;(2)若从分数在内的学生中任选两人进行调研谈话,求恰好有一人分数在内的概率.
(本小题满分7分) 选修4—5:不等式选讲已知关于的不等式:的整数解有且仅有一个值为2.(Ⅰ)求整数的值;(Ⅱ)已知,若,求的最大值.