某种产品特约经销商根据以往当地的需求情况,得出如下该种产品日需求量的频率分布直方图.(Ⅰ)求图中的值,并估计日需求量的众数;(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为件(),纯利润为S元.(1)将S表示为的函数;(2)根据直方图估计当天纯利润S不少于元的概率.
设是满足不等式≥的自然数的个数. (1)求的函数解析式; (2),求; (3)设,由(2)中及构成函数,,求的最小值与最大值.
个正数排成行列: 其中每一行的数由左至右成等差数列,每一列的数由上至下成等比数列,并且所有公比相等,已知,,,试求的值.
设数列的前项和为,,. ⑴求证:数列是等差数列. ⑵设是数列的前项和,求使对所有的都成立的最大正整数的值.
在△ABC中,已知角A、B、C所对的边分别是a、b、c,边c=,且tanA+tanB=tanA·tanB-,又△ABC的面积为S△ABC=,求a+b的值。
(1)若,化简: (2)求关于x的不等式(k2-2k+)x<(k2-2k+)1ˉx的解集