某卖场同时销售变频冷暖空调机和智能洗衣机,这两种产品的市场需求量大,有多少卖多少。今年元旦假期7天该卖场要根据实际情况确定产品的进货数量,以达到总利润最大。已知两种产品直接受资金和劳动力的限制。根据过去销售情况,得到两种产品的有关数据如下表:(表中单位:百元)试问:怎样确定两种货物的进货量,才能使7天的总利润最大,最大利润是多少?
圆锥PO如图1所示,图2是它的正(主)视图.已知圆O的直径为AB,C是圆周上异于A,B的一点,D为AC的中点. (1)求该圆锥的侧面积S;(2)求证:平面PAC平面POD;(3)若,在三棱锥A-PBC中,求点A到平面PBC的距离.
已知正方形ABCD的边长为2,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)从C,D,E,F,G,H这六个点中,随机选取两个点,记这两个点之间的距离的平方为,求概率P.(2)在正方形ABCD内部随机取一点P,求满足的概率.
已知函数(1)求的最小正周期和单调递增区间;(2)已知是三边长,且,的面积.求角及的值.
已知函数.(1)当时,求函数在上的最大值;(2)令,若在区间上不单调,求的取值范围;(3)当时,函数的图像与x轴交于两点,且,又是的导函数,若正常数满足条件.证明:.
的内切圆与三边的切点分别为,已知,内切圆圆心,设点A的轨迹为R. (1)求R的方程;(2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点Q(Q不与C重合),使恒成立,若求出Q点的坐标,若不存在,说明理由.