的内切圆与三边的切点分别为,已知,内切圆圆心,设点A的轨迹为R. (1)求R的方程;(2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点Q(Q不与C重合),使恒成立,若求出Q点的坐标,若不存在,说明理由.
(本小题满分14分)已知数列的前n项和满足,其中b是与n无关的常数,且(1)求;(2)求的关系式;(3)猜想用表示的表达式(须化简),并证明之。
(本小题满分13分)已知m为实常数,设命题p:函数在其定义域内为减函数;命题是方程的两上实根,不等式对任意实数恒成立。(1)当p是真命题,求m的取值范围;(2)当“p或q”为真命题,“p且q”为假命题时,求m的取值范围。
(本小题满分12分)已知斜率为1的直线与双曲线相交于B、D两点,且BD的中点为M(1,3)。(1)求双曲线C的离心率;(2)若双曲线C的右焦点坐标为(3,0),则以双曲线的焦点为焦点,过直线上一点M作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程。
(本小题满分12分)某旅行社组织了一个有36名游客的旅游团到安徽风景名胜地旅游,其中是省外游客,其余是省内游客,在省外游客中有玩过黄山,在省内游客中有玩过黄山。(1)在该团中随机采访3名游客,求恰有1名 省外游客玩过黄山且省内游客玩过黄山少于2人的概率;(2)在该团的省内游客中随机采访3名游客,设其中省内游客玩过黄山的人数为随机变量,求的分布列及数学期望
(本小题满分12分)如图,在底面是直角梯形的四棱锥P—ABCD中,,平面ABCD,PA=AB=BC=3,梯形上底AD=1。(1)求证:平面PAB;(2)求面PCD与面PAB所成锐二面角的正切值;(3)在PC上是否存在一点E,使得DE//平面PAB?若存在,请找出;若不存在,说明理由。