如图,在菱形ABCD中,对角线AC与BD相交于点O.CE∥BD,DE∥AC,连接OE.求证:OE=AD.
如图,在平面直角坐标系中,一次函数y=2x+b的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C(-2,0),点A的坐标为(n,6).(1)求该反比例函数的解析式;(2)求点B的坐标,写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若点E为x轴上使△ACE为直角三角形的一点,求点E的坐标.
我市某水产养殖中心,2014年鱼塘饲养鱼苗10千尾,平均每千尾鱼的产量为103千克,2015年计划继续向鱼塘投放鱼苗,每多投放鱼苗1千尾,每千尾的产量将减少50千克.(1)今年应投放鱼苗多少千尾,可以使总产量达到10450千克?(2)该水产养殖中心今年应投放鱼苗多少千尾,可以达到最大总产量?最大总产量是多少千克?
为了测量停留在空中的气球的高度,小明先站在地面上某点处观测气球,测得仰角为30°,然后他向气球方向前进了40m,此时观测气球,测得仰角为60°,如图,点A、B表示小明两次观测气球时眼睛的位置,若小明的眼睛离地面1.5m,请你帮助他计算出气球的高度.(结果保留根号)
如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.
如图,一个可以自由转动的均匀转盘被分成了4等份,每份内均标有数字,小明和小亮商定了一个游戏,规则如下:(1)连续转动转盘两次;(2)将两次转盘停止后指针所指区域内的数字相加(当指针恰好停在分格线上时视为无效,重转);(3)若数字之和为奇数,则小明赢;若数字之和为偶数,则小亮赢.请用“列表”或“画树状图”的方法分析一下,这个游戏对双方公平吗?并说明理由.