解下列方程(1)(2).
如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B度数.
△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,求∠AQN的度数.
如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.
由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在上图中再将两个空白的小正方形涂黑,使它成为轴对称图形.
如图,△ABC是等边三角形,BD是中线,P是直线BC上一点.(1) 若CP=CD,求证:△DBP是等腰三角形;(2) 在图①中建立以△ABC的边BC的中点为原点,BC所在直线为x轴,BC边上的高所在直线为y轴的平面直角坐标系,如图②,已知等边△ABC的边长为2,AO=,在x轴上是否存在除点P以外的点Q,使△BDQ是等腰三角形?如果存在,请求出Q点的坐标;如果不存在,请说明理由.