已知数列的各项均是正数,其前项和为,满足.(1)求数列的通项公式;(2)设,数列的前项和为,求证:.
(文科)已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.(Ⅰ)求抛物线的方程;(Ⅱ)当点为直线上的定点时,求直线的方程;(Ⅲ)当点在直线上移动时,求的最小值.
(理科)已知圆:().若椭圆:()的右顶点为圆的圆心,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)若存在直线:,使得直线与椭圆分别交于,两点,与圆分别交于,两点,点在线段上,且,求圆半径的取值范围.
(文科)设、分别是椭圆的左、右焦点.(Ⅰ)若是该椭圆上的一个动点,求·的最大值和最小值;(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.
(文科)过点作直线与椭圆相交于两点,为坐标原点,求面积的最大值及此时直线倾斜角的正切值。
(理科)已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.(Ⅰ)当直线过点时,求直线的方程;(Ⅱ)当时,求菱形面积的最大值.